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Uniform semiclassical approach to fidelity decay: From weak to strong perturbation
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We study fidelity decay by a uniform semiclassical approach, in the three perturbation regimes: namely, the
perturbative regime, the Fermi golden rfEGR) regime, and the Lyapunov regime. A semiclassical expres-
sion is derived for the fidelity of initial Gaussian wave packets with width of the oftléf being the effective
Planck constant The short-time decay of the fidelity of initial Gaussian wave packets is also studied with
respect to two time scales introduced in the semiclassical approach. In the perturbative regime, it is confirmed
numerically that fidelity has FGR-type decay before Gaussian decay sets in. An explanation is suggested for a
non-FGR decay in the FGR regime of a system with weak chaos in the classical limit by using the Levy
distribution as an approximation for the distribution of the action difference. In the Lyapunov regime, it is
shown that the average of the logarithm of fidelity may have roughly Lyapunov decay within some time
interval in systems possessing large fluctuations in the finite-time Lyapunov exponent in the classical limit.
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I. INTRODUCTION with an exponential decay of fideliti¥ (t) «exp(-I't), where

It is well known that in classical, chaotic systems the timeg is the half-width of the local spectral density of states

evolution of trajectories in phase space are sensitive to sma |’DOS) [7]. The decay rate can also be calculated semiclas-
ortaj >IN P P X ! ically [10,11]. (iii) With increasing perturbation strength,
changes in initial conditions, as well as in parameters in thé

Hamiltonians. On the other hand, in the quantum case, tha"© enters into the Lyapunov regime, in whidh(t) o

time evolution of state vectors in Hilbert space is insensitivqi)i(r%_);}gsvsvi'ézl)\ d?/ilgr%it::ﬁe 6]L y?i\r/);J Tgiﬁ;ﬁg&iﬂ;ﬂ&igﬁﬂgr—

to small changes in initial conditions. Nearly 20 years ago, . h turbati ¢ i | that
Peres observed that small changes in perturbation paramet xapunov regime, the perturbation strength 1S so fargé tha
the classical perturbation theory fails. Presently, little is

can be employed to study the stability of quantum motion inknown about the decaying behavior of fidelity in this regime
the Hilbert spac¢1], supported by further numerical mves_fWithin a random matrix theory approach, in which fidelity is

tigations[2,3]. The quantity used to measure the stability o : ;
quantum motion is the quantum Loschmidt echo, or fidelityeXpreSSEd as the Fourier t_ran_sform of I.‘DO.S' a Gaussian
decay was suggested for fidelity decay in this regi@g

e e e o o0 o wilhout frher umericalconfimatice. (34,93 for shape
nians with a slight difference in the classical limNj(t) of LDOS in this reglmg It is also know.n that, for time
=|m(H)[2, where short enough, the fldellty.has a quadratlc decay, which may
be extended to a Gaussian decay, just as a direct result of
m(t) = (Wolexp(iH t/h)exp(— iHot/h)|Woy. (1)  Pperturbation theory21]. _
Most recent investigations show that the above picture of
Here Hy is the Hamiltonian of a classically chaotic system fidelity decay is incomplete, at least in four aspects. First, in
and H;=Hgy+eV, with € a small quantity and/ a generic the perturbative regime, numerical resutg®] show that fi-
perturbing potential. This quantity can also be seen as a medelity in the kicked rotator model has an exponential decay,
sure of the accuracy to which an initial quantum state can bevhich can be described by their semiclassical approximation,
recovered by inverting, at time the dynamics with the per- before the Gaussian decay sets in at about the Heisenberg
turbed HamiltoniarH. time. A random matrix approach to fidelity also suggests an
Fidelity decay has attracted increasing attention, since thapproximately exponential decay of fidelitytathort enough
work of Jalabert and Pastawdld], which relates the decay [29]. It is not quite clear whether this exponential decay is
rate of fidelity to the(maximum) Lyapunov exponent of the the FGR decay or not.
underlying classical dynamics. In order to understand the Second, a non-FGR decay of fidelity in the expected FGR
behavior of fidelity in various systems, extensive investigaregime has been found in a system with weak chaos in the
tions have been carried olift—33]. Previous investigations classical limit, which is induced by deviation of the distribu-
show the existence of at least four regimes of perturbatiotion of action difference from the expected Gaussian distri-
strength for fidelity decay7-9]: (i) In the perturbative re- bution[28]. An analytical description for the rate of the non-
gime below a perturbative border, the fidelity has a GaussiaRGR decay is still lacking.
decay[1]. In this regime, the typical transition matrix ele-  Third, in the Lyapunov regime, the decay rate of the av-
ment is smaller than the mean level spacifig.Above the erage fidelity has been found to be different from the
perturbative regime is the Fermi golden r¢eGR) regime,  Lyapunov exponent, although still perturbation independent,
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in systems possessing large fluctuations in the finite-tim@above. In the perturbative regime, the exponential fidelity
Lyapunov exponenit36,37, as in the kicked top and kicked decay before the Heisenberg time is shown numerically to
rotator modelq7,19,20. A semiclassical WKB description coincide with the FGR decay in the sawtooth map. In the
of wave packets suggests an expyt) decay for the fidelity, FGR regime, we revisit the non-FGR decay in the sawtooth
with X <\ [20]. More recently, more general semiclassicalmap found in28] and show numerically that the central part

expressions of fidelity decay have been derived, with the the distribution of the action difference can be approxi-

Lyapunov decay and the; decay being two limiting cases mated by the Levy distribution, which can explain some
[33], along the lines of the semiclassical treatment to ﬁde”typroperties of the non-FGR decay. Section VI is devoted to a

in Refs.[6,9,10,22,28 However, the situation has not been study of fidelity decay in the Lyapunov regime, when the

clarified completely, since numerical results in the kic_ked tOpaverage is performed over the logarithm of fidelity. Conclu-
model show that Lyapunov decay can be resumed in an a|

; . X " aons and discussions are given in Sec. VII.
proximate way if an average is performed on the logarithm

of fidelity, but not on the fidelity itself19] (see[38] for an
analysis of the fluctuating behavior of fidelity

Finally, in the deep Lyapunov regime, the fidelity of ini-  The Hamiltonians in the two models employed in this
tial Gaussian wave packets may have a decay which is Siaper are of the forms
perexponential and much faster than the Lyapunov decay at
short initial times[20]. Meanwhile, a decay with a rate of 1, “
twice the Lyapunov exponent may appear before a time scale H= PL Vi(r) X 8t-nT), 2
introduced in[33] in systems with constant local Lyapunov n=0
exponents. A quantitative description of the former decay isyith
still not available, and the time scale that separates the two

Il. MODELS: KICKED ROTATOR AND SAWTOOTH MAP

faster than Lyapunov decays is unknown. Vi(r) =K cosr  (for kicked rotatoy, (3
In this paper, we use the uniform semiclassical approach
introduced in[22] to study the problems mentioned above. V(r) = = K(r — m)?/2 (for sawtooth map (4)

This approach is not only a suitable method for a numerica L L . .
evaluation of fidelity, but also a good starting point for ana-|:or simplicity, the periodr is set to be unitT=1. Kicks are

lytical study [28,33. For simplicity, we study one- switched on at=n, n=0,1,2,.... Thelassical map describ-

dimensional(1D) kicked systems only in this paper. ing the kicked rotator is the standard map,

The paper is organized as the following. In Sec. I, we Pn+1 = P+ K sin(r,) (mod2m),
introduce two models, the kicked rotator and the sawtooth
map, which will be employed for numerical check of our
analytical results. A major difference between the two mod-
els is that the sawtooth map has a constant finite-tim&he sawtooth map is
Lyapunov exponent, while the kicked rotator has large fluc-
tuations in the finite-time Lyapunov exponent. For the saw-
tooth map, the semiclassical prediction of the rate of FGR
decay can be calculated accurately at some parameter values; Me1=Tn+Ppey  (Mod2m). (6)
meanwhile, it has weak chaos with a structure of Cantori in
some parameter reginjd9].

The validity of the uniform semiclassical approach has Prs1 1 K P
been checked numerically for initial point sourd@?,28. 1 k+1 '
For initial Gaussian wave packets, narrowness of the packets
is assumed in deriving the semiclassical expressions of fideWwhere the 2<2 constant matrix possesses two eigenvalues
ity in [6,22). In Sec. Ill, we show that the expression[22]  1+(K*K?+4K)/2. AtK>0, motion in the sawtooth map is
fails in describing fidelity decay when the width of the initial completely chaotic, with the Lyapunov exponextIn({2
Gaussian wave packet is of the ordér, where# is the  +K+[(2+K)2-4]Y2/2) given by the largest eigenvalue of
effective Planck constant in the 1D kicked systems studiedhe matrix. The finite-time Lyapunov exponent has the same
here. By considering the second-order term in the Taylovalue as the Lyapunov exponeit defined in the limit
expansion of the action, we derive a modified expressiont— oc. On the other hand, the standard map, which is chaotic
which works well for this kind of initial wave packets. atK larger than 6 or so, does not have a constant finite-time

In Sec. IV, we discuss the short-time behavior of fidelity. Lyapunov exponent, because the mapping matrix is a func-
In particular, a time scale is introduced for fidelity decay oftion of r,,. It is of interest to mention a recent result on the
initial Gaussian wave packets, which separates the two fastetassical analog of fidelity: namely, for systems with more
than the Lyapunov decays mentioned above, and an analytihan one-dimensional configuration space the classical fidel-
cal expression is derived for fidelity before this time scale.ity has a decaying rate related to not only the maximum
The dependence of the first-kick decay of the fidelity of ini- Lyapunov exponent, but also other positive Lyapunov expo-
tial point sources on the perturbation strength is also derivechents[40].

Fidelity decay in the perturbative and FGR regimes is stud- The two classical systems are quantized on a torus
ied in Sec. V, with an emphasis on the problems mentione@41-44. In a system with 1D finite configuration space,

Me1=Tn+ Pnsy (MOd2m). (5

Pre1=Pn+t K(rp—m)  (mod2m),

Equation(6) can be rewritten in the matrix form

)

rn+1_7T rn_7T
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O=r<ry, and 1D finite momentum space<(p<p,, the 1 \94 i (ro=To)?
effective Planck constartie¢ and the dimensioN of the Polro) = gy ex gpo*o—z—gz . (19
Hilbert space has the relation
When ¢ is small enough, within the effective domain of,
NPt = Py (®) S(r,rg;t) can be expanded in the Taylor expansion with re-

In both models, we take,=py,=2m, and hencdigg=27/N.  SPect to the centdr,
In what follows, we will omit the subscript eff i, for

brevity. S(rroit) =S(r.¥o;t) = (ro=To) - ps+ -+, (19
Floquet operators in the two quantized systems have th@here
form
IS(r,ro;t)
U = exfd - ip%(2h) lexd— iV (F)/7]. (9 Ps=— e |- (16)
"o=o

Eigenstates off are denoted bylj), f|j)=j#|j), with j
=0,1,2,... N-1. In this representation, elements of the op-
eratorU are

is the initial momentum of the trajectosfr ,Ty;t).
The semiclassical approximation to the fidelity amplitude
m(t) in Eq. (1) is

U

! exp[iw(j,_j)z—iNVk(S)(rj)—ig . (10

o
AN N 20

(D) = j ar Tt ;0T vhocr 0, a7

The evolution of states/(t)=U', is calculated numerically

by the fast Fourier transforgFT) method. H : ; .
A . . . 1 andH,, respectively. For quite smafl, the expansion in
The fidelity in Eq. (1) involves two slightly different gq (15 can be truncated at the first-order term. Then, by

HamiltoniansH, andH, =Ho+eV. In what follows,Ho takes i Eqs(13)(16) the integration on the right-hand side of
the form ofH in Eqg. (2) and Eq. (12 is calculated.

The amplitudem(t) thus obtained i$6]

2 \02 i
mM(t) = Mcy(t) = ( ) f dr> C, exp{gASS(r,?o;t)

where the two states are propagated by the two Hamiltonians

l ee]
V= V(N2 st =nT), (1)
n=0 >
7Tﬁ2
except in Sec. IV B 2.

&
= 2(Ps=Po) | (18)
lll. UNIFORM SEMICLASSICAL APPROACH TO p2te O

FIDELITY whereAS(r,Tg;t) is the action difference for the two trajec-
A. Approximation to fidelity with action expanded to the first- tories with the same labslin the two systemsi; andH,. In
order term the first-order classical perturbation theory, the difference be-

For the sake of completeness and convenience in pre:;erwyeen the two trajectoriesis assumed negligible,

ing our results, we briefly recall the main results of the semi- t

classical approach to fidelity in Refi$,22] in this section. AS(r,Tot) = ef dt'V[r(t")], (19
In the semiclassical approach, an initial stétgr,) in a 0

d-dimensional configuration space is propagated by the sem|-

classical Van Vleck—Gutzwiller propagator with V evaluated along the trajectory.
propagator, A simpler expression afn(t) can be obtained by changing

the variabler — pg [22],

2 \di2 . .

(20)

cl? i i
Ke(r.rost) = (zmsﬁ)d/z exp[%ss(r,ro;t) - E'“S] (13 where AS(py,To;t) coincides withAS(r,Fq;t) for the same
trajectorys with initial momentump,. The main contribution
Here, the labet [more exactlys(r,ro;t)] indicates classical to the right-hand side of Eq20) comes from a window in
trajectories starting fromg and ending at in a timet, the  the p, space, which is centered B§ and has a size of the
actionS((r,r;t) is the time integral of the Lagrangian along order#/ in all directions.

hedrit) = f dr oKsdr,ro; ) ¢ho(ro), (12

whereKg(r,ro;t) =2 K(r,rq;t), with

the  trajectory s, Ss(r,ro;t):fgdt’c, and Cg For a system with finite momentum space, E20) is
=|del(ﬁzss/ar0iarj)|. s is the Maslov index counting the con- invalid for initial Gaussian wave packets that are wide in the
jugate points. momentum space. The extreme case is for initial point

Consider an initial Gaussian wave packet centerekhat sources,(r |Wo)=+(27%)4/V,8(r —rg), with V), being the
with dispersioné and mean momentuipy, volume of the momentum space. In this c§28],
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T T T T T T l
Toit) = S(r,To;t) - 0—To)?,
] S(r,ro;t) = S(r,¥o;t) = (ro—To)ps — 25"0( To)
(24)

. _ where
EO
g ] s _ s _ 3255(r,2ro;t) 25

] g o ro=fo dry =

1 Using Eq.(24) and following a procedure similar to the deri-

vation of Eq.(20), we obtain
0 2 4 6 8 10 12 14

t .
I ~ (po Po)’
t) = expl —A Joit) — ,
FIG. 1. Comparison of the exact values of a single fideNitt) Mect) f p{ﬁ SPoTo:1) (fiD/f)2
and their semiclassical approximatiomé.(t) in Eg. (20) and (26)
MgcAt) in Eg. (26), in the kicked rotator model. Parameters &re

=10, N=2'7=131072,0=1, andx=1. The typical value oD in  \where
Eq. (27) is about 8.8>1, explaining the deviation dfig.(t) from

the exact values, whil®.At)= t)|2 being quite close to the 1/ aps\?
exact ones sed)7[Mecdt) 9 D= \ 1 +_2<_ps> . (27)
. K ﬁo

1 i Note thatD is a function ofpg, T andt. A numerical test for
m(t) = my(ro,t) = = f dpo exp{ _AS(pO:rO;t)]- this modified semiclassical approximation is shown in Fig. 1.
Vo fi Equations(20) and (26) show that the modification is to
(21 replace(7i/ €) in Eq. (20) by

h 1%
The semiclassical expressionsroft) discussed above sug- Wy = ED = \/ 2 §2< aDs) (28)
. . ro

gest introducing

i.e., the change in the size of the effective window for inte-
o=é€lh (22) gration. Therefore, the modified semiclassical expression in
Eq. (26) predicts the same long-time decaying behavior of
fidelity as Eq.(20), more precisely, the same decaying rate
for the FGR decay in the FGR regime, and the samé)
decay in the Lyapunov regimef. Sec. V). While the value
B. Contribution to fidelity from the second-order term in the of D may have obvious influence on the short-time behavior

action expansion of fidelity.
When the value ok decreases further, higher-order terms
Hereafter we restrict our discussions to one-dimensionah the Taylor expansion of the action should be considered;

kicked systems. In deriving Eq20) for the fidelity of an e g., até3~#, the third-order term should be taken into ac-
initial Gaussian wave packet, the right-hand side of @)  count.

is truncated at the first-order term. Hence, E20) is valid
only wheng<#, or k> 1 with the parametek defined by

as a quantum perturbation parameter.

IV. SHORT-TIME BEHAVIOR OF FIDELITY

K= hl& (23) In this section, we discuss short-time-decay of fidelity of
' initial Gaussian wave packets and of initial point sources.

which has been confirmed in our numerical calculation.
When the conditionk>1 is not satisfied, high-order
terms on the right-hand side of E(L5) may give a consid- The semiclassical expressions of fidelity discussed in the
erable contribution. Indeed, numerically, an obvious deviaprevious section, specifically EqR0), (21), and(26), show
tion of Mg(t) =|mse4(t)|? from the exactM(t) has been ob- that the decaying behavior ®(t) is mainly determined by
served ai close to 1 or smallefsee Fig. 1 for an example the action differencé&S(py,rq;t) as a function ofy,. There-
We remark that numerical evaluation of the right-hand sidefore, before addressing fidelity decay, we first discuss an im-
of Eq. (20) for m(t) becomes more and more difficult with portant property of the action difference: namely, its oscilla-
increasing t, because the number of oscillations of tion vs py.
AS(pg,To;t) Vs pg increases exponentially with[33]. The number of oscillations afS, asp, runs ovel 0, 27),
To have a good semiclassical approximatiomkatl, one increases exponentially with time To see this, using Eq.
needs to consider the second-order term on the right-hand9), we write the slope oAAS/e, denoted byk,, in the fol-
side of Eq.(15), lowing explicit form:

A. Oscillation of AS(pg,rg;t) versuspg

066203-4



UNIFORM SEMICLASSICAL APPROACH TO FIDELITY.. PHYSICAL REVIEW E 71, 066203(2005

0.0 ]
05 -\/’,’—\.
810 ]
4-1.51 =11
-2.04 -

3 p,/2n

0.0 0.2 0.4 12 0.6 0.8 1.0 FIG. 3. Same as Fig. 2, but for the standard map WithL0.
p./2n

FIG. 2. Variation ofAS(pg,rq;t)/21e versuspy/ 27 in the saw- 1. Time interval t< 7,

tooth map aK=1, for a value ofry taken randomly withirf0, 2). The main contribution to the right-hand side of Eg6)

r(t) is the positionr at timet, with initial condition (ro,po)- For  comes from a narrow window in the, space. For time

clarity, r is plotted as a continuous function pf, by adding 27 at  short enough, a linear approximation can be used for the

the discontinuous points. action differenceAS within the narrow window. This sug-
gests the introduction of a time scale, denoted7hysuch
19AS(po,fo;t) tooaVar(t) that fort<r; the linear approximation taS can be used in
kpy=—""—" = f ' : (290 calculating the right-hand side of E(26),
€  JPo o I dpo

AS(po,To;t) = AS(Pg,To;t) + eky(Po —Po), (30)
where the dependence kf on pg, ro, andt is not written ~ ) -
explicitly, for brevity. Due to the underlying chaotic classical Wherek; is the value ok; in Eq. (29) at the cente(o, Bo) of
dynamics, |dr’(t')/dpg| increases exponentially witti, on  the initial Gaussian packet.
average. On the other hand, the variancé8fincreases as ~ To give an estimation toy, we useA.pO(t[) to denote the
[10]; hence, the typical value dAS increases ast. As a  Siz€ of 'Fhe region |n'th¢)p space, which is capable of the
result, the number of the oscillations AfS increases expo- above linear approximation foAS. One should note that
nentially witht. This fast oscillation ofAS is crucial in un-  APo(t) shrinks exponentially, due to the exponentially in-
derstanding the long-time decay of fidelity in the Lyapunovcreasing of the number of oscillations &5 vs p,. Since the
regime[28,33. oscillation of AS is mainly induced by local instability of

We present some examples of the oscillating behavior ofrajectories Ap(t) shrinks roughly ag™", where
AS in the sawtooth magFig. 2), as well as some in the 1
kicked rotator mode{Fig. 3). The two models have different At)= lim  =[In|&x(t)/x(0)[], (31)
dependences of the positioft) on the initial momentunp, x0)—0 t

at f|x_ed timet. Specifically, in the SaWtOOth map)s a Im_ear with &x(t) denoting distance in phase space and an average
function of p, except at the discontinuous points, with the

slope given by the constant local Lyapunov exponent, whilc—_performed over phase spaddn a classical system with

in the kicked rotator, it is an oscillating function. strong chaosA(t) us ually approaches ‘h‘? Lyapunov eXpo-
nent\ quickly, as will be illustrated numerically in Sec. VI.

Then,

B. Time scalesr; and =, for fidelity of initial Gaussian wave

packets Apo(t) = b(t) Apg(1)e D, (32

s I . whereb(t) is the influence of other factors, such as the vari-
The fidelity of initial narrow Gaussian wave packets has a . . : .
nce ofAS increasing linearly witht, and changes much

rich behavior at short times. For example, there are both ver | than th tial t At ti i
fast and quite slow decays at the first several kicks in th ower than the exponential term. g, We write
de_ep Lyapunov regimi20], as well as a depay with arate of Apo(7y) = agw,, (33)
twice the Lyapunov exponen3]. By using the uniform

semiclassical approach discussed above, we give a unifiaglherea;>1 is determined by the accuracy required.
description for these phenomena in this section. Substituting Eq(32) into Eq. (33) for t=7;, we obtain
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1 bApy(1)
) ) In —alwp , (34

’Tl""l

where b is the average value di(t) for small t. Several
points can be seen in E(B4). First, sinceApy(1) decreases
with increasingo, when o is large enough, the right-hand
side of Eq.(34) can be smaller than 1, implying=0. Sec-
ond, for large enoughy such thatA(7;) =\, the dependence
of 7, on# is given by(1/2\)In 271 for é=42, which is half
the Ehrenfest time.

Now we calculate fidelity of a single initial Gaussian 0 20 40 60 80 100
wave packet at times shorter thapn When the change db o
is negligible_ within the _effec_tive harrow window g, in FIG. 4. Comparison of the exact values Mft) and the semi-
which the I|_ne:_ar appr0X|matlon foAS in Eg. (30) can be classical prediction given by E§35) at the first kickt=1, for one
used, substituting E¢30) into Eq. (26), we have initial Gaussian wave packet chosen randomly, in the kicked rotator
model withK=10, k=1.

log, M(1)

1 ~
MgcAt) = eXp{— —(crwpkp)z] t<m, (35
2 In order to estimate the time,, we note that the number

of oscillations ofAS increases asye*®t; then, 7, satisfies
with the time dependence on the right-hand side given by,a relation 0 2

Ko(To, Post).
Due to exponential divergence of neighboring trajectories T~ 1 In( ™ ) (37)
in the phase space of chaotic systems, the main contribution A(7)  \Cow,

to the right-hand side of Eq29) comes from timed’ ~t.
Therefore, |k, increases typically as,e®", with ¢, being

the prefactor. For this typical type of time dependencﬁk‘gq;;c T~ 1 In( ™ ) (39)
Eq. (35) predicts DY CoWp/

For A(m,) =\, this gives the estimation

1 The time scaler, is important in understanding short-time
MscAt) = exp — “wich(elf)?e® |, t< . (36) decay of fidelity in the deep Lyapunov regime wisrs> 1.

2 Indeed, in the time interval, <t < 7,, the phasé&S/7% on the
right-hand side of Eq(26), as a function ofp,, can usually
be approximated by a straight line within the regipp
€ [Po—Wp,Po+W,]. Then, for initial states satisfyingrk,|
> m/wp, one hag33]

Alternatively, one may consider the average dflliM) as in
Ref. [20]. Using Egs.(35 and (31), one obtains the same
prediction as on the right-hand side of E86) for fidelity
averaged in this way, which gives the extremely fast, double
exponential-rate decay of fidelity predicted in RE20], ~ 5
M(t) = exp(—constx €M), when A(t) ~ \. Note that the pre- Msdt) o Moky)", m <t<m. (39)
diction (35) is more general than E36), since it works for To be more specific, let us consider a special kind of
small values ofk,| as well, as long &, is not quite close to ~ System which has constant local Lyapunov exponeint the
any stationary point, which may invalidate the approxima-classical limit and has no stationary point A—i.e., k;
tion in Eq. (30). # 0 for all py. For such systems\(t)=\. As shown in[33],
Numerical check of our predictiof85) is shown in Fig. 4 when the smallesfk,| are sufficiently large, such that Eq.
for the first kick. Foro< 40, the analytical results have good (39) is applicable to all initial states, the average fidelity has
agreement with the exact numerical calculations. With in-2 decay with a rate of twice the Lyapunov exponent,
creasingo, the deviation enlarges, witMg(t) <M(t), be- —
cause the difference between the exact values of the phase M(t) = e, (40
AS/#% and their linear approximations increases linearly Withsincekp increases ag on average. Here let us consider a
. different situation in which the smallesk,| are not large
enough for the application of E¢39); i.e., |oky|> m/wj, is
not satisfied forky| close to the smallest possible value. In
For t> 7, the main contribution to the right-hand side this case, the average fidelity has a decay rate smaller than
of Eq. (26) comes from the integration over the region 2\, due to the influence smalk,. On the other hand, we
[Po—Wp, BotWp]. It is useful to introduce a second time note that the size of the region p§ with quite smalllk,| is
scale, denoted as, at whichAS(p,,To;t) completes one full  usually small and decreases exponentially, due to the expo-
oscillation period ap, runs overpo—wp, Po+Wp] [33]. Note  nential increment of the number of oscillationsA5; hence,
that 7, < 7, according to their definitions. the decay rate of the average fidelity should be larger shan

2. Time interval 7 <t<m,
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To check numerically the above prediction of fidelity de-
cay betweere™ and e for 7, <t<r,, we use the saw-
tooth map, with the following form of the perturbatidh(Hg

unchangef[33]:
VO =vO(r) > st-nT), (41)
n=0
where
VO =-Ni(r-m), i=1,2,3,4,5. (42)

Setting the coefficient,=1/2,V@ gives the perturbation in
Eq. (11), which are also used ifl7,28. The other coeffi-

cients\; are chosen by the requirement of having the same
decaying rate in the FGR regime—i.e., possessing the sam

value of the classical action diffusion const&tE) [10]. For
kicked mapsK(E) has the forn{45,46|

K(E)=>C(0) + S oo, 43)
=1
where
C) =(VIr(h] - (VHVINO)] - V), (44)

with the average performed over phase space.
At integer values oK in the sawtooth map in Ed4), a
simple derivation shows th&(l)=0 for | #0 and

L e (oddi),
2i+1
C(0) = 5 (45
P e i
i+ 1)2/\/’, 7 (eveni).
Then,
. a2z
N"TTE,’ No=gm Namgo Ne=5 5
(46)

For the sawtooth map with the above perturbation, the

action difference at timé can be written as
t-1

AS=-¢e> Ni[r(n) - =] .

n=0

(47)

It is easy to prove, by using E¢6), thatr(n) for any fixedn

is a monotonically increasing function @f, except at the
discontinuous changes from 0 ter2or reversely. Then, Eq.
(47) shows that no point exists at whidy=0 for oddi,
while k, can be zero for even (See Figs. 2 and 5 for some
examples of numerical illustrationsTherefore, in the time

interval ; <t<7,, M(t) should have a faster than Lyapunov
decay for odd, with a decay rate betweenand 2. (It has
the standard Lyapunov decay for evief83].)

Some values ofk| for V) of i=3 and 5 are presented in
Fig. 6. It is seen that somig, of i=5 are quite close to zero,
implying a decay rate of fidelity between and 2 in the
time interval(r,, m) for i=5; on the other hand, the smallest
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FIG. 5. Same as Fig. 2 but for the sawtooth map with perturba-
tions in Eq.(41) andt=2.

of 2\ at largeo. Indeed, these predictions have been con-
firmed in a direct calculation d¥1(t), as shown in Fig. 7. The
values ofr; and 7, can be estimated as follows. Kt=1 and
&=\, numerical computation shows theg=0.45 andD
=1.9. We takeApy(1) ~27/100 for =100 (cf. Fig. 2 for

variation of AS/ e att=1), a;~5, b~1; then, Eq/(34) gives
7.~ 1. Meanwhile, Eq(38) gives 7,=~6.5. The two estima-
tions are in good agreement with the direct numerical results

shown in Fig. 7.

C. Dependence of fidelity at the first kick on perturbation
strength for initial point sources

The fidelity of initial point sources, described by Eg1)
with integration performed over the whofiy domain, has a
short-time decay different from that of initial Gaussian wave
packets discussed above.

In the FGR regime, withr <o~ 1 [17], fidelity can be
calculated by writing the right-hand side of E&1) in terms
of the distribution ofAS (see Refs[10,28). When the dis-
tribution of ASis close to the expected Gaussian distribution,
one has the FGR decay for fidelity,

Meor(t) = exd - 26°K(E)t], (48)

whereK(E) is the classical action diffusion constant in Eq.
(43).

FIG. 6. Values ofk, of ary chosen randomly, in the sawtooth

k| for i=3 is not quite close to zero, implying a decay ratemap with perturbation/"’ of i=3 and 5,t=3.
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é: \ FIG. 8. Decay of fidelityM(t) at the first kickt=1 as a function
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< 4 4 4 shows a FGR behavior for smatand a 14 dependence for large

o. MFGR(t):e‘Z-Z"Z‘ in the sawtooth map witly=1.
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FIG. 7. Decay of the averaged fidelity in the sawtooth map with . . .
K=1, for VO of i=1,3,4,5 in Eq(41), with parametersr=100, for quantized maps, whereg2g is the number of classical

N=131072,£= /. For these parameters;~1 and,~6.5 (see orbits with identical action, which is 2 for the models used

text). In the time intervalr, <t<, the average fidelity has the here, andd is the total mean density of states. The ing&x

Lyapunov decay foi=4, a roughly double-Lyapunov decay for =1 for time-reversal-invariant systems ag#2 for time-

=3, and a decay between the two decaysifob. The quite fast reversal-breaking system&f. Ref.[16] for the expression

decay fori =1 is due to the linear dependenceAs on p,, as shown  for continuous variablek.

in Fig. 5. Averages are performed over 2000 initial Gaussian pack- The Gaussian deca$0) sets in at about the Heisenberg

ets, with centers taken randomly with flat distribution in the regiontime t; = N. Fort short enough compared with, there is no

I 2<To(Po) <37/2. reason for the semiclassical approach to fail in describing
fidelity decay, even for quite smadl Therefore, it is reason-

On the other hand, for>1, Eq.(21) enables an estima- able to expect that fidelity in the perturbative regime, before
tion to the dependence of fidelity on perturbation strengthsome time shorter that, can be described by the semiclas-
which is 1/o, as shown in Eq(A4) in Appendix A. Since sical theory, which gives the same expressi48) as in the
this dependence does not change with time, it can be seen BER regime. In fact, numerically, fidelity has been found to
the first kick only. For systems with constant local LyapunovPossess an exponential decay, before some time shorter than
exponents, combining EqA4) and the known Lyapunov the Heisenberg timéy, in the kicked rotator modef22].
decay, we have Whether this exponential decay is the decay in &) or

L not is unclear, since the value &f(E) in this model was
M - _ calculated approximately.
M(®) = o SXP= D 49 To make the situation clearer, we employ the sawtooth

. . . . map, in which the value oK(E) can be computed analyti-
Figure 8 presents an example of numerical confirmation tg P (B P Y

L i . - cally for integer values of the parametkr in its Hamil-
the above predictions for the first-kick decay of fidelity. toni{'im K(E):?T4/90:1.08[see E8(45)]. Numerical results

indeed support the above argument that fidelity has the FGR-
V. PERTURBATIVE AND FGR REGIMES type decay before a time shorter than the Heisenberg time
(see Fig. 9.

In this section, we study fidelity decay before the Heisen- Deviation of fidelity decay in the perturbative regime
berg time in the perturbative regime and the influence ofrom the prediction of Eq(48) provides a good opportunity
weak chaos on fidelity decay in the FGR regime. for a numerical study of the breakdown time of the semiclas-
sical approach, denoted lty. It is known thattg is propor-
tional to some inverse algebraic power/of47-50. In the
sawtooth map, it was found thag is linear in 1/, more

The regime of quite smak, more precisely, quite small exactly,tz~0.8Nx#"%, as seen in Fig. 10.

o, is named the perturbativé®T) regime, in which fidelity

A. Perturbative regime

has a Gaussian-type decfl;7,10,16. Combining the per- B. FGR regime
turbation theory, the random matrix theof®MT), and the With increasing the perturbation parametetM (t) comes
semiclassical theory, it has been found that close to its saturation value, which is proportional taN1/

066203-8



UNIFORM SEMICLASSICAL APPROACH TO FIDELITY.. PHYSICAL REVIEW E 71, 066203(2005

0.0 —— T to be close to a Gaussian distribution, while the RMT ap-
3 proach can be used in deriving the FGR decay. On the other
-4.0x10°% Sl - hand, fort relatively long(but shorter tharg), the semiclas-
el sical approach works well, while the RMT approach may
|§ _8.0x10° B meet the problem of deviation of the LDOS from the Lorent-
g zian form in the tail region, which is a result of the finite
T Aox10” i} domain of the quasienergy spectriifi].
TI\FA& When the underlying classical dynamics has weak chaos,
A6x10" | non-FGR decay of fidelity may appear in the expected FGR
’ regime, due to an obvious deviation of the distributiom\&

0 100 200 300 400 500 600 700 800 from the expected Gaussian distributi@8]. For this kind
t of systems, the RMT approach does not give a correct pre-
FIG. 9. Decay of the averaged fidelity in the perturbative regimegéﬁltl\?vgrfg fidelity decay, while the semiclassical approach

of the sawtooth map &=1, N=512, ands=10". The average is In the semiclassical approach, one can separate the aver-
performed over 100 initial point sources taken randomly in the con- PP ! P

figuration space. Approximately up te-400, the fidelity is quite age fidelity into a mean-value part and a fluctuating part,

close to the prediction in Eq48) for FGR decay. denoted byM,(t) and M¢(t), respectively, M(t)= [m(t)|?
=M,(t) +Mx(t), where

[11], before Gaussian decay sets in at about the Heisenberg _

time. Then, one enters into the FGR regime. The perturbation M(t) = [m(t)|?, (52

border for the crossover from the perturbative regime to the . .
FGR regime can be estimated [49] with an average performed over initial states. In the FGR

regime, the average fidelity is approximately given by the

€ InN mean-value parﬁa(t), with M¢(t) <M,(t) [28]. The mean-
op=—F ~ : (51) —
P 2K(E)N

h value partM 4(t) can be expressed in terms of the distribution

For systems possessing strong chaos in the classical Iimi"E(AS) of the action differencas,

two analytical approaches are available to obtain the FGR _ .

decay: namely, the semiclassical approach with the assump- M(t) = ‘ f dASE*S"P(AS)
tion of a Gaussian-type distribution &fS[10], which gives

the result in Eq(48), and the RMT approach making use of \yhere

the closeness between the form of the LDOS and the Lorent-
zian distribution 7,8]. The two approaches are believed to be 1

equivalent when both are valid, while an analytical proof of P(AS) = - f drodpod[AS— AS(po,fo;t)].

the equivalence is available only in some special cé8gs drodpg

An interesting phenomenon is that the two approaches are

complementary in some cases. For example, for quite short (59
timet, there is no analytical reason for the distributionA&

2
: (53

In case of weak chaos, a general analytical expression for
the distribution ofASis still absent. Since the Gaussian dis-

' ' s tribution is invalid in this case, it is natural to study the
10004 1 possibility of Levy distribution. Due to its infinite variance,
E the Levy distribution cannot describe the distributionAd$
in the long-tail region. Therefore, we focus on the central
part and short-tail region of the distribution of the action
o difference, which gives the main contribution to the mean-
100_; ——6=0.05 1 value partM,(t) of fidelity.
ﬁ °=8-g(1)001 We consider the following asymmetric form of the Levy
p c=0. . . . .
1. e 0.6N distribution[51]:
10 5 5 L 1 (" _ q 55
ML | T LI | T T = —
o o (ap)=o- | explizoyadz (55

N

FIG. 10. The breakdown timg of the semiclassical approach with x=AS/e. Here the function/(2) is

versus the dimensiolN of the Hilbert space, in the logarithmic (2 = exg-igz- D||Z|a[1 +iBsgnw(z )]}, (56)
scale for the sawtooth map witk=1, at different values of. In

numerical calculationtg was taken as the first kick at which the where

relative error [[M(t)-Mggr(t)]/M(t)| is larger than 0.1, where

Megr(t) is the prediction of the semiclassical theory in E4f). w(z,a) =tan(m7al/2) for a # 1, (57)
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FIG. 11. Decay ratey of fidelity vs perturbation strengthr, FIG. 12. DistributionP[(AS-(AS))/€] of the classical action

calculated by the best fit ofy# to InM(t), for some values of the differenceAS att=10, forK=0.4 in the sawtooth map, calculated
parameteK in the sawtooth map. In the calculation of the averageP taking randomly 10 initial points in the phase space. Here
fidelity, 2000 randomly chosen Gaussian wave packets were used #85 = ei(V)=—m€t/6, with the average performed over the phase

initial states. The solid curve shows the rate=2.202 of the EGR  SPace. The solid curve is a fit given by the Levy distribution in Eg.
decay.N=131072,é= VA (55), with =1, andB andD, as two fitting parameters.

w(z,a) = (2/min2 for a=1. (58) VI. LYAPUNOV REGIME
Increasing the perturbation strength further, one enters
The parameter, with 0<a <2, determines the decay of into the Lyapunov regime, in which the average fidelity has
long tails—i.e.,L(x) ~ [x|"**% for large|x|. The paramete8  the Lyapunov decag ™ [6], in the special situation with
has the domaifi-1, 1], with 8=0 giving the symmetric dis- negligible fluctuation in the finite-time Lyapunov exponent.
tribution, g gives a shift along the direction, andD, is  In the general situation, the fluctuation of the finite-time
related to the width of the distribution. If the Levy distribu- Lyapunov exponent is not negligible and the average fidelity
tion can be used as an approximation R§AS), substituting has aA4(t) decay[33], which is usually different from the
Eq. (55) into Eq. (53), one obtains Lyapunov decay. Tha (t) decay will be discussed briefly in
Sec. VI A, starting from the modified semiclassical approxi-
— N mation to fidelity in Eq.(26).
Ma(t) = exp(- 2Da%), (59 As mentioned in the Introduction, in the kicked top model
with strong chaos in the classical limit, which possesses large
with the time dependence given by thatDf. Note that a fluctuation in the finite-time Lyapunov exponent, numerical
Gaussian form ofP(AS) corresponds tax=2, giving the  results show that the average of the logarithm of fidelity has
well-known dependence om in the FGR decay. roughly the Lyapunov decaji9]. In Sec. VI B, we explain
It is known that the sawtooth map has weak chaoK at this phenomenon by using the technique developd@3h
<1 and has Cantori structures at smill[39]. Non-FGR
decay has been observed in this model, which can still be o
described by Eq(53) [28]. Therefore, we use this model to A Aa(t) decay of average fidelity in the deep Lyapunov
study the possibility of using the Levy distribution as an regime

approximation to the distributioR(AS). Since Eq(26) can be obtained from E¢20) by replacing
Numerically we use #t to fit In M(t) in order to calculate 7 /¢ with w,=%D/¢, generalization of the results 33] is

the decay rate of fidelity. Variation of y vs o is presented in  straightforward. In this section, we present the main points of

Fig. 11 for some values d€ between 0.1 and 0.9, before the the generalization, because part of them will be used in Sec.

Lyapunov regime is reachedFidelity has been found to VIB.

have Lyapunov decay in the Lyapunov regime #x1 For systems in whichAS has stationary points witk,

[28].) As seen in the figure, foK=0.1, 0.2, and 0.4, there =0, we denote byr the stationary points oAS and byp,

exist some regions of, respectively, in whichy increases the momenta at whick,=0. Foro>1, the stationary phase

approximately linearly witho. According to Eq.(59), this  approximation can be used in calculating the right-hand side

implies thata=1 if the Levy distribution can be used as an of Eq. (26), which gives

approximation toP(AS). Figure 12 shows a fit of the Levy

distribution to the central part and short tails of the distribu-

tion P(AS) at K=0.4, with «=1 fixed andD, and 8 used as Medt) = 2 my(t), (60)

two adjusting parameters. The agreement is encouraging, for “

which an analytical explanation is still not yet available and

deserves a further investigation. where
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i o 5
\"ﬂ eXp|: %AapOa!r&t) - (pOa - pO)Zl\N%:|
Wy NINET

m,(t) =

with

AS = 32AS(D(;,70;U
Py

Note thatw, in Eq. (61) takes the value at the stationary
point «, with D being a function ofpg,,.

Let us consider timé> 7,, for which there are one or
more stationary points within the effective window py
space for integration on the right-hand side of E§). Simi-
lar results can also be obtained fet 7,, when the stationary
phase approximation is applicable, as discussd@3h The

(61)

Po=Poq
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FIG. 13. Variation ofA(t) and A4(t) with t in the kicked rotator
model atk =7, with the average performed over®i@ndom initial

average fidelity in the ordinary sense, with an average peRositions in phase space. The definitions\¢f) andA,(t) are given

formed over botfr, andp,, can be calculated by using di-
agonal approximation, with the following result obtained:

1

-, 62

M(t) = 1(t) ==foﬁof dpo
Ps
where Pgs:= U, A,. Here, A, denotes the regiofip,,,Po.

- 5] U [p0a+ 51 paa]! Where pga:(p0a+ pO,a—l)/Z! pgaz(pOa
+Poa+1)/2, @andd is a small quantity.

in Egs.(31) and(65), respectively. The value df(t) approaches the
Lyapunov exponent = 1.27 quickly, ag increases.

cannot be neglected,(t) coincides with thes™1! decay in
Ref.[20] in the limit t— oo, with Ny =lim_ .. A4(t).

B. Decay of the average of IiM(t)
To understand the decaying behavior of the average of

The main contribution to the integral on the right-hand!n M(t) for initial Gaussian wave packets, we divide the time

side of Eq.(62) comes from small values ¢,| in the region
Ps. Forpg e P, close to a stationary poi,, k, in Eq. (29)
can be approximated by

t (92V ol r\2
kp = f dt’|: AR
0 Po

or'2
Due to exponential divergence of neighboring trajectories i

N Pr'!

?Tpg}(po_ pOa)' (63)

Eqg. (63) comes from timed’ =t. The time evolution of the
guantity inside the brackets in E(63) is given by the dy-
namics of the system described bly. On average, it in-
creases apox(t)/ ox(0)]%, with dx(t) being distance in phase

g

phase space, the main contribution to the right-hand side qﬁ

t into four time intervals, specifically0,7), (71, ™), [7,19),
and [tq,ty). Herety is a time scale defined below, beyond
which the diagonal approximation can be used before aver-
age is performed, and is the time at which the saturation
value of fidelity is reached.

Within the first time interval M(t) is described by Eq.
(35) for most of initial states. Fos not large, INM(t) is close
zero. On the other hand, for quite largethe average of
M(t) can be quite smalicf. Fig. 4).

For the second time intervét, ), Eq. (39) can be used
to calculate InM(t), for initial states withk, satisfying

|a~kp|>77/wp. For this part of initial state{lip| typically in-

space. With increasing time, the number of stationary pointgreases asx(t)/ o(0) [see Eq(29)]; as a result, the average
increases exponentially, roughly in the same way asfInM(t) for this part of initial states behaves asA{@)t,

X(t)/ 5x(0), since the oscillation oASis mainly induced by
local instability of trajectories.
Then, substituting Eq63) into Eq. (62), we have

— 1
Mi(t —_——|. 64
v [Dl&(t)/axm)l] (©4
WhenD changes slowly witlp, andT,, we have
M(t) o I 5(t) = e M0t
with
1 x|
A)=- lim —In 65
10 x0)—ot oX(0) 69

In systems with constant local Lyapunov exponents,(E§).
reduces to the usual Lyapunov decay with(t)=\. On the

where A(t) is defined by Eq(31). On the other hand, for

initial states with smallk,|, which lie in the neighborhoods

of the stationary points akS, fidelity decay is slower. Since
the total size of the regions qf, with small |kj| is small
compared with the domain @k, the average of IIM(t) over

all possible initial states usually has a decay rate between
A(t) and 2A(t). In a classical system with strong chadst)
usually approaches the Lyapunov exponantuickly, as
seen in Fig. 13; then, in the time interv@al,, ), the decay
rate of the average of IM(t) is usually close to, or a little
larger than\.

For t around =, or longer, the main contribution to the
average of I'M(t) is given by the neighborhood of stationary
points and one can start from E&O) in calculatingM(t). In
the third time interval 7, ty), the number of stationary points
within the effective window inpg is small; hence, the diag-

other hand, when fluctuations in local Lyapunov exponenbnal approximation cannot be used in calculating the abso-
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lute value square of the right-hand side of E§0). We do ofax_ ' ' i ]

not know much about the decay of the average dli) in I e N - log, <M(t)>

this time interval. One should note that the third time interval -14 RN A~ <log, M(t)>

is quite short, as a result of the exponential increment of the T Ap — A (t) decay

number of oscillations oAS., N -~~~ A(t) decay
In the fourth time interva[ty,t), the diagonal approxima- 15 ] WA

tion is applicable to the absolute value square of the right- g 31 ' T

hand side of Eq(60) before the average is performed, due to

the large number of stationary points within the effective | 1
window in py. Then, Eqs(60) and(61) give 5 o
o A-A-
277/ eXF{_ Z(po _’bO)Z/WZJ ] T T T T
M(t) = >, Im,b)?=> = « B 0 5 10 15 20 25
( ) % | ( )| % W’ZJ |AS’0’(| t
(66) FIG. 14. Fidelity decay in the kicked rotator modelkat 7, N
) _ : =2% ¢=20. The average is performed over 500 initial Gaussian
Using Eq.(29), we write AS, as wave packets witl§= 7%, whose centers are chosen randomly in the
¢ 2 A\ 2 5, chaotic sea in phase space. Th&) and A(t) decays are the pre-
AS ~ 6] dt’ _V<‘9L> + ﬂ&_r . (67) dictions in Egs(69) and(65), respectively, with the values df(t)
« 0 ar'2\ apq o' opg and A4(t) shown in Fig. 13. Decay of the average Mf(t) is de-

scribed by theA(t) decay. The average of M(t) is a little faster
Arguments similar to those leading from E3) to Eq.(64)  than theA(t) decay in an initial short time interval, as predicted by
show that, when the fluctuation efx(t)/ 5x(0)| is small for  the theory.
po within the effective window in they, space, the main

decaying behavior of a single fidelity is typically K is not large enough for the value bftaken. We mention
a1 that the\, decay at long time has indeed been observed for
M) o | 3x(t)/ (), (68) k=10 in Ref.[20].

with (0) being a smalldisplacement frofy Bo. the cen- e . SEE B0 12 o e above
ter of the initial Gaussian packet. Then, it is ready to Obtammay disappear. Indeed, in this cade,M(t)| for t<r, is
expIn M(t)] o« e A0t = g™, (69)  usually much larger than that foe 7, [cf. Eq.(35)]. Then,
due to the fluctuation of the value &f with respect to initial
where the second equation is obtained, sin€B is usually  condition, for timet a little beyond the average af;, the
close to the Lyapunov exponektwithin this time interval.  average of IfM(t) is still dominated by contributions de-
Since the fluctuation ofx(t)/ 5x(0)| within the effective  scribed by Eq.35). Hence, the average of M(t) can be
window in py increases with time, Eq69) becomes invalid  obviously smaller than the prediction of the Lyapunov decay
for t long enough. Fot sufficiently long, the fluctuation of in the second time interval, as shown numerically26].
|ox(t)/ 8x(0)| within the effective window inpy has similar
properties as in the wholg, domain; then, the average of
In M(t) has theA,(t) decay in Eq.(65). For intermediate VII. CONCLUSIONS AND DISCUSSIONS

times, it is reasonable to expect that the decay rate of the |, this paper, we have improved the uniform semiclassical
average of IM(t) decreases from the Lyapunov exponentapnroximation to fidelity by considering the second-order
and approaches(t) with increasingt. _ term in the Taylor expansion of action, which is important
Combining the above results, it is seen that there indeegbr fidelity of initial Gaussian wave packets with width of the
exists a certain short time interval in which the average .Oforder V. Short-time decay of fidelity is analyzed, which is
In M(®) follows roughly the Lyapunov decay, as observed ininjtial state dependent; in particular, two time scales have
the kicked top model in Ref19]. Specifically, the decaying peen introduced and studied in detail for initial Gaussian
rate of the average of INM(t) is close to or a little larger than \yave packets. Initial FGR-type decay of fidelity in the per-
the Lyapunov exponent in the second time interval; thenturbative regime is confirmed by direct numerical calcula-
beyond the short third time interval, it decreases from thejon. A non-FGR decay in the FGR regime in a system with
Lyapunov exponent and approachegt) at long time. weak chaos in the classical limit is explained by relating the
We have tested these predictions, as well as those in théistribution of action difference to the Levy distribution. The
previous section, in the kicked rotator modelkat 7, which  average of the logarithm of fidelity is shown to have an ap-
is shown in Fig. 14. Itis seen in the figure that the average oproximate Lyapunov decay within some time intervals in the
In M(t) decays a little faster than the(t) decay(as well as  Lyapunov regime in systems possessing large fluctuations of
the Lyapunov decayinitially; then, after a transient time, it the finite-time Lyapunov exponent in the classical limit.
decays a little slower than the Lyapunov decay, but obviously As we have demonstrated, fidelity has a decaying behav-
faster than theA(t) decay. The predicted long-timé&;(t) ior richer than the simple picture mentioned in the beginning
decay for the average of M(t) is not seen aK=7, because of the Introduction with just four distinct regimes. In Fig. 15,
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o |-l APPENDIX: DEPENDENCE OF FIDELITY DECAY ON
PERTURBATION STRENGTH IN THE DEEP LYAPUNOV
REGIME FOR INITIAL POINT SOURCES

In this appendix, we consider the dependence of fidelity
decay on perturbation strength in the deep Lyapunov regime
transition for initial point sources, which can be estimated by using Eq.
olregion . (21). Let us first divide the domaif0, 277) of p, into a series

of subregions| pg;, Pg(j+1), SO that within each of the subre-

(1/c) decay for t=1
Lyapunov decay

Saturation reached

FGR decay

e gions the phasAS/# of the integrand on the right-hand side
Gaussian decay of Eq. (21) can be approximated by a linear function,
bob t ASh = o(kjpo+by), for py € [Pgj, Pogj+1)),  (AL)

FIG. 15. Schematic diagram for fidelity decay of initial point where the parametedg and b; do not depend om,. Here
sources in systems with constant local Lyapunov exponents in thpy =0 for j=1 andpy;=27 for j=Nx+1, with Ny denoting
classical limit.tg is the breakdown time of the semiclassical ap- the number of the subregions. Substituting Egl) into Eq.
proximation, andty is the Heisenberg time, beyond which the (21), we have

Gaussian decay sets iy and o, are two perturbation scales intro- Ny
duced in Ref[28]. Below gy, one has the FGR decay for tg, and my(t) = 1 2 X (A2)
above o, is the Lyapunov regime, in which the Lyapunov decay P 2 i1 1

appears beyond the first kick. )
with

|

we present a schematic diagram for the present understand- X =
ing of the fidelity decay of initial point sources in systems

possessing a constant local Lyapunov exponent in the classi- In arranging the subregions, we require tNatshould be

cal limit. For initial Gaussian wave packets, short-time decay@s Small as possible, conditional on the linear approximation
is more complex than for initial point sources, for which two In EQ. (A1) not losing the main contribution to the right-hand
time scalesr, and 7, should be introduced, as discussed inSid€ Of EG.(21). Since the phasasS/f: is proportionals, Ny

this paper. When the underlying classical dynamics has IargI creases approximately linearly witiw. In the deep

: . o apunov regime with quite large, for subregions chosen
fluctuations in the finite-time Lyapunov exponent, the decay-"%/tr?iS way, t?le phase g{ whicg is approxim%tely propor-

ing rate of fidelity in the Lyapunov regime is not given by ion4) to o, can be regarded as random with respegt and

the Lyapunov exponent. ro; then, the diagonal approximation can be used in comput-
ing the averaged fidelity,
N
_ 1 X
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